본문 바로가기

IT/Container&k8s

K8S Service : LoadBalancer(MetalLB)

안녕하세요. Kubernetes Advanced Networking Study(=KANS) 3기 모임에서 스터디한 내용을 정리했습니다. 해당 글에서는 k8s Service 중 LoadBalancer 에 대해 자세히 알아보겠습니다. 

 

LoadBalancer Type

- k8s Docs

외부 클라이언트가 '로드밸런서' 접속 시 부하분산 되어 노드 도달 후 iptables rule목적지 파드와 통신됨

 

클라우드 환경 LoadBalancer Service

AWS 환경의 AWS LoadBalancer 서비스

- CLB : 클래식 로드밸런서. NLB/ALB에 비해서 가장 적은 기능을제공하며 가장 오래된 로드밸런서

- NLB : 네트워크 로드밸런서. CLB/ALB에 비해 처리 속도가 빠르고 L4 계층에서 동작 .TCP/UDP/TLS 트래픽 처리가능

- ALB : 애플리케이션 로드밸런서. HTTP/HTTPS/gPRC 트래픽을 전문으로 처리하며 L7 계층에서 동작.  AWS ALB는 k8s에서 Ingress 리소스를 생성 시 사용됨. 

 

2가지 동작 방식

1. 외부 클라이언트는 로드밸런서로 접속 하고 로드밸런서는 파드가 있는 노드들로 부하분산해서 전달. NodePort를 목적지 포트로 전달하게 됨. 노드의 NodePort로 인입 후에는 iptables에 의해서 파드로 랜덤 부하분산을 통해서 전달. 즉 해당 경우에는 부하분산 과정이 두 번 수행됨

2. 로드밸런서에서 파드의 IP로 직접 부사분산 전달함. 로드밸런서가 파드의 IP 정보를 알기 위해서 별도의 로드밸런서 컨트롤러를 구성하고 해당 로드밸런서 컨트롤러가 로드밸런서에게 파드의 IP를 동적으로 전달함. 부하분산 과정을 한 번만 수행하여 첫번째 방식에 비해서 좀 더 효율적임. 이를 위해서는 AWS 로드밸런서 컨트롤러를 구성해야 함

 

온프렘 환경 LoadBalancer Service

- AWS LoadBalancer 서비스에 거의 동일하게 별도의 장비로 접속 후 노드에 NodePort 혹은 Pod로 직접 전달하여 통신할 수 있음 . 예) 시트릭스, F5 네트웍스 제품

- 온프렘 환경에서 동작하는 LoadBalancer Service 예 : MetalLB, OpenELB, PubeLB, kube-vip 등

 

서비스(Service) LoadBalancer Type 통신 흐름

DNAT 2번 동작 : 첫번째(로드밸런서 접속 후 빠져 나갈때), 두번째(노드의 iptables 룰에서 파드IP 전달 시)

 

서비스(LoadBalancer) 보완점

- 서비스(LoadBalancer) 생성 시 마다 LB(예 AWS NLB)가 생성되어 자원 활용이 비효율적임 ⇒ HTTP 경우 인그레스(Ingress) 를 통해 자원 활용 효율화 가능!

- 서비스(LoadBalancer)는 HTTP/HTTPS 처리에 일부 부족함(TLS 종료, 도메인 기반 라우팅 등) ⇒ 인그레스(Ingress) 를 통해 기능 동작 가능!

- (참고) 온프레미스 환경에서도 MetalLB 혹은 OpenELB(구 PorterLB) 를 통해서 온프레미스 환경에서 서비스(LoadBalancer) 기능 동작 가능!

 

실습 환경

K8S v1.31.0 , CNI(Kindnet, Direct Routing mode) , IPTABLES proxy mode

- 노드(실제로는 컨테이너) 네트워크 대역 : 172.18.0.0/16

- 파드 사용 네트워크 대역 : 10.10.0.0/16 ⇒ 각각 10.10.1.0/24, 10.10.2.0/24, 10.10.3.0/24, 10.10.4.0/24

- 서비스 사용 네트워크 대역 : 10.200.1.0/24

#
cat <<EOT> kind-svc-2w.yaml
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
featureGates:
  "InPlacePodVerticalScaling": true
  "MultiCIDRServiceAllocator": true
nodes:
- role: control-plane
  labels:
    mynode: control-plane
    topology.kubernetes.io/zone: ap-northeast-2a
  extraPortMappings:
  - containerPort: 30000
    hostPort: 30000
  - containerPort: 30001
    hostPort: 30001
  - containerPort: 30002
    hostPort: 30002
  - containerPort: 30003
    hostPort: 30003
  - containerPort: 30004
    hostPort: 30004
  kubeadmConfigPatches:
  - |
    kind: ClusterConfiguration
    apiServer:
      extraArgs:
        runtime-config: api/all=true
    controllerManager:
      extraArgs:
        bind-address: 0.0.0.0
    etcd:
      local:
        extraArgs:
          listen-metrics-urls: http://0.0.0.0:2381
    scheduler:
      extraArgs:
        bind-address: 0.0.0.0
  - |
    kind: KubeProxyConfiguration
    metricsBindAddress: 0.0.0.0
- role: worker
  labels:
    mynode: worker1
    topology.kubernetes.io/zone: ap-northeast-2a
- role: worker
  labels:
    mynode: worker2
    topology.kubernetes.io/zone: ap-northeast-2b
- role: worker
  labels:
    mynode: worker3
    topology.kubernetes.io/zone: ap-northeast-2c
networking:
  podSubnet: 10.10.0.0/16
  serviceSubnet: 10.200.1.0/24
EOT

# k8s 클러스터 설치
kind create cluster --config kind-svc-2w.yaml --name myk8s --image kindest/node:v1.31.0
docker ps

# 노드에 기본 툴 설치
docker exec -it myk8s-control-plane sh -c 'apt update && apt install tree psmisc lsof wget bsdmainutils bridge-utils net-tools dnsutils ipset ipvsadm nfacct tcpdump ngrep iputils-ping arping git vim arp-scan -y'
for i in worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-$i sh -c 'apt update && apt install tree psmisc lsof wget bsdmainutils bridge-utils net-tools dnsutils ipset ipvsadm nfacct tcpdump ngrep iputils-ping arping -y'; echo; done


# k8s v1.31.0 버전 확인
kubectl get node

# 노드 labels 확인
kubectl get nodes -o jsonpath="{.items[*].metadata.labels}" | jq

# kind network 중 컨테이너(노드) IP(대역) 확인
docker ps -q | xargs docker inspect --format '{{.Name}} {{.NetworkSettings.Networks.kind.IPAddress}}'

# 파드CIDR 과 Service 대역 확인 : CNI는 kindnet 사용
kubectl get cm -n kube-system kubeadm-config -oyaml | grep -i subnet
kubectl cluster-info dump | grep -m 2 -E "cluster-cidr|service-cluster-ip-range"

# MultiCIDRServiceAllocator : https://kubernetes.io/docs/tasks/network/extend-service-ip-ranges/
kubectl get servicecidr
NAME         CIDRS           AGE
kubernetes   10.200.1.0/24   2m13s

# 노드마다 할당된 dedicated subnet (podCIDR) 확인
kubectl get nodes -o jsonpath="{.items[*].spec.podCIDR}"
10.10.0.0/24 10.10.4.0/24 10.10.3.0/24 10.10.1.0/24

# kube-proxy configmap 확인
kubectl describe cm -n kube-system kube-proxy
...
mode: iptables
iptables:
  localhostNodePorts: null
  masqueradeAll: false
  masqueradeBit: null
  minSyncPeriod: 1s
  syncPeriod: 0s
...


# 노드 별 네트워트 정보 확인 : CNI는 kindnet 사용
for i in control-plane worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-$i cat /etc/cni/net.d/10-kindnet.conflist; echo; done
for i in control-plane worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-$i ip -c route; echo; done
for i in control-plane worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-$i ip -c addr; echo; done

# iptables 정보 확인
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-control-plane  iptables -t $i -S ; echo; done
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-worker  iptables -t $i -S ; echo; done
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-worker2 iptables -t $i -S ; echo; done
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-worker3 iptables -t $i -S ; echo; done

# 각 노드 bash 접속
docker exec -it myk8s-control-plane bash
docker exec -it myk8s-worker bash
docker exec -it myk8s-worker2 bash
docker exec -it myk8s-worker3 bash
----------------------------------------
exit
----------------------------------------

# kind 설치 시 kind 이름의 도커 브리지가 생성된다 : 172.18.0.0/16 대역
docker network ls
docker inspect kind

# arp scan 해두기
docker exec -it myk8s-control-plane arp-scan --interfac=eth0 --localnet

# mypc 컨테이너 기동 : kind 도커 브리지를 사용하고, 컨테이너 IP를 직접 지정
docker run -d --rm --name mypc --network kind --ip 172.18.0.100 nicolaka/netshoot sleep infinity
docker ps
## 만약 kind 네트워크 대역이 다를 경우 위 IP 지정이 실패할 수 있으니, 그냥 IP 지정 없이 mypc 컨테이너 기동 할 것
## docker run -d --rm --name mypc --network kind nicolaka/netshoot sleep infinity

# mypc2 컨테이너 기동 : kind 도커 브리지를 사용하고, 컨테이너 IP를 직접 지정
docker run -d --rm --name mypc2 --network kind --ip 172.18.0.200 nicolaka/netshoot sleep infinity
docker ps
## 만약 kind 네트워크 대역이 다를 경우 위 IP 지정이 실패할 수 있으니, 그냥 IP 지정 없이 mypc 컨테이너 기동 할 것
## docker run -d --rm --name mypc2 --network kind nicolaka/netshoot sleep infinity

# kube-ops-view 설치
helm repo add geek-cookbook https://geek-cookbook.github.io/charts/
helm install kube-ops-view geek-cookbook/kube-ops-view --version 1.2.2 --set service.main.type=NodePort,service.main.ports.http.nodePort=30000 --set env.TZ="Asia/Seoul" --namespace kube-system

# myk8s-control-plane 배치
kubectl -n kube-system edit deploy kube-ops-view
---
spec:
  ...
  template:
    ...
    spec:
      nodeSelector:
        mynode: control-plane
      tolerations:
      - key: "node-role.kubernetes.io/control-plane"
        operator: "Equal"
        effect: "NoSchedule"
---

# 설치 확인
kubectl -n kube-system get pod -o wide -l app.kubernetes.io/instance=kube-ops-view

# kube-ops-view 접속 URL 확인 (1.5 , 2 배율) : macOS 사용자
echo -e "KUBE-OPS-VIEW URL = http://localhost:30000/#scale=1.5"
echo -e "KUBE-OPS-VIEW URL = http://localhost:30000/#scale=2"

# kube-ops-view 접속 URL 확인 (1.5 , 2 배율) : Windows 사용자
echo -e "KUBE-OPS-VIEW URL = http://192.168.50.10:30000/#scale=1.5"
echo -e "KUBE-OPS-VIEW URL = http://192.168.50.10:30000/#scale=2"

 

 

MetalLB

 

- 리더 파드(GARP)가 선출되고 해당 리더 파드가 생성된 노드로만 트래픽이 인입되어 해당 노드에서 iptables 분산되어 파드로 접속

- 서비스(로드 밸런서)의 'External IP' 전파를 위해서 표준 프로토콜인 ARP(IPv4)/NDP(IPv6), BGP 를 사용합니다

- 클라우드 플랫폼 호환 : 대부분의 클라우드 플랫폼(예 AWS, Azure, GCP 등)과 호환되지 않습니다 - 링크

 

기본 정보 확인

# 파드와 서비스 사용 가능 네트워크 대역
kubectl cluster-info dump | grep -m 2 -E "cluster-cidr|service-cluster-ip-range"
                            "--service-cluster-ip-range=10.200.1.0/24",
                            "--cluster-cidr=10.10.0.0/16",

# kube-proxy 모드 확인 : iptables proxy 모드
kubectl describe  configmap -n kube-system kube-proxy | grep mode
mode: "iptables"

# iptables 정보 확인
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-control-plane  iptables -t $i -S ; echo; done
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-worker  iptables -t $i -S ; echo; done
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-worker2 iptables -t $i -S ; echo; done
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-worker3 iptables -t $i -S ; echo; done

 

 

파드 생성

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: webpod1
  labels:
    app: webpod
spec:
  nodeName: myk8s-worker
  containers:
  - name: container
    image: traefik/whoami
  terminationGracePeriodSeconds: 0
---
apiVersion: v1
kind: Pod
metadata:
  name: webpod2
  labels:
    app: webpod
spec:
  nodeName: myk8s-worker2
  containers:
  - name: container
    image: traefik/whoami
  terminationGracePeriodSeconds: 0
EOF

 

파드 접속 확인

# 파드 정보 확인
kubectl get pod -owide

# 파드 IP주소를 변수에 지정
WPOD1=$(kubectl get pod webpod1 -o jsonpath="{.status.podIP}")
WPOD2=$(kubectl get pod webpod2 -o jsonpath="{.status.podIP}")
echo $WPOD1 $WPOD2

# 접속 확인
docker exec -it myk8s-control-plane  ping -i 1 -W 1 -c 1 $WPOD1
docker exec -it myk8s-control-plane  ping -i 1 -W 1 -c 1 $WPOD2
docker exec -it myk8s-control-plane  curl -s --connect-timeout 1 $WPOD1 | grep Hostname
docker exec -it myk8s-control-plane  curl -s --connect-timeout 1 $WPOD2 | grep Hostname
docker exec -it myk8s-control-plane  curl -s --connect-timeout 1 $WPOD1 | egrep 'Hostname|RemoteAddr|Host:'
docker exec -it myk8s-control-plane  curl -s --connect-timeout 1 $WPOD2 | egrep 'Hostname|RemoteAddr|Host:'

 

MetalLB - Layer 2 모드

manifests설치 진행

# Kubernetes manifests 로 설치
#kubectl apply -f https://raw.githubusercontent.com/metallb/metallb/v0.14.8/config/manifests/metallb-native.yaml
kubectl apply -f https://raw.githubusercontent.com/metallb/metallb/refs/heads/main/config/manifests/metallb-native-prometheus.yaml

# metallb crd 확인
kubectl get crd | grep metallb
bfdprofiles.metallb.io                      2024-09-28T15:24:06Z
bgpadvertisements.metallb.io                2024-09-28T15:24:06Z
bgppeers.metallb.io                         2024-09-28T15:24:06Z
communities.metallb.io                      2024-09-28T15:24:06Z
ipaddresspools.metallb.io                   2024-09-28T15:24:06Z
l2advertisements.metallb.io                 2024-09-28T15:24:06Z
servicel2statuses.metallb.io                2024-09-28T15:24:06Z

# 생성된 리소스 확인 : metallb-system 네임스페이스 생성, 파드(컨트롤러, 스피커) 생성, RBAC(서비스/파드/컨피그맵 조회 등등 권한들), SA 등
kubectl get-all -n metallb-system # kubectl krew 플러그인 get-all 설치 후 사용 가능
kubectl get all -n metallb-system

# 파드 내에 kube-rbac-proxy 컨테이너는 프로메테우스 익스포터 역할 제공
kubectl get pods -n metallb-system -l app=metallb -o jsonpath="{range .items[*]}{.metadata.name}{':\n'}{range .spec.containers[*]}{'  '}{.name}{' -> '}{.image}{'\n'}{end}{end}"

 

## metallb 컨트롤러는 디플로이먼트로 배포됨
kubectl get ds,deploy -n metallb-system

## 데몬셋으로 배포되는 metallb 스피커 파드의 IP는 네트워크가 host 모드이므로 노드의 IP를 그대로 사용
kubectl get pod -n metallb-system -o wide
NAME                          READY   STATUS    RESTARTS   AGE     IP           NODE                  NOMINATED NODE   READINESS GATES
controller-679855f7d7-2dvbm   2/2     Running   0          9m17s   10.10.2.6    myk8s-worker3         <none>           <none>
speaker-jfvh9                 2/2     Running   0          9m17s   172.18.0.2   myk8s-worker          <none>           <none>
speaker-l2tdn                 2/2     Running   0          9m17s   172.18.0.5   myk8s-worker3         <none>           <none>
speaker-pzs8z                 2/2     Running   0          9m17s   172.18.0.3   myk8s-worker2         <none>           <none>
speaker-vfsdj                 2/2     Running   0          9m17s   172.18.0.4   myk8s-control-plane   <none>           <none>

# (참고) 상세 정보 확인
kubectl get sa,cm,secret -n metallb-system
kubectl describe role -n metallb-system
kubectl describe deploy controller -n metallb-system
kubectl describe ds speaker -n metallb-system

 

컨피그맵 생성 : 모드 및 서비스 대역 지정

# kind 설치 시 kind 이름의 도커 브리지가 생성된다 : 172.18.0.0/16 대역
docker network ls
docker inspect kind
# kind network 중 컨테이너(노드) IP(대역) 확인 : 172.18.0.2~ 부터 할당되며, control-plane 이 꼭 172.18.0.2가 안될 수 도 있음
docker ps -q | xargs docker inspect --format '{{.Name}} {{.NetworkSettings.Networks.kind.IPAddress}}'

# IPAddressPool 생성 : LoadBalancer External IP로 사용할 IP 대역
kubectl explain ipaddresspools.metallb.io

cat <<EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
  name: my-ippool
  namespace: metallb-system
spec:
  addresses:
  - 172.18.255.200-172.18.255.250
EOF

kubectl get ipaddresspools -n metallb-system
NAME        AUTO ASSIGN   AVOID BUGGY IPS   ADDRESSES
my-ippool   true          false             ["172.18.255.200-172.18.255.250"]

 

# L2Advertisement 생성 : 설정한 IPpool을 기반으로 Layer2 모드로 LoadBalancer IP 사용 허용
kubectl explain l2advertisements.metallb.io

cat <<EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
  name: my-l2-advertise
  namespace: metallb-system
spec:
  ipAddressPools:
  - my-ippool
EOF

kubectl get l2advertisements -n metallb-system
NAME              IPADDRESSPOOLS   IPADDRESSPOOL SELECTORS   INTERFACES
my-l2-advertise   ["my-ippool"]

 

(참고) 로그 확인 : 아래 로그 -f 모니터링 해두기

# (옵션) metallb-speaker 파드 로그 확인
kubectl logs -n metallb-system -l app=metallb -f
kubectl logs -n metallb-system -l component=speaker --since 1h
kubectl logs -n metallb-system -l component=speaker -f

# (옵션) kubectl krew 플러그인 stern 설치 후 아래 명령 사용 가능
kubectl stern -n metallb-system -l app=metallb
kubectl stern -n metallb-system -l component=speaker --since 1h
kubectl stern -n metallb-system -l component=speaker # 기본 설정이 follow
kubectl stern -n metallb-system speaker  # 매칭 사용 가능

 

서비스 생성 및 확인

서비스(LoadBalancer 타입) 생성

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
  name: svc1
spec:
  ports:
    - name: svc1-webport
      port: 80
      targetPort: 80
  selector:
    app: webpod
  type: LoadBalancer  # 서비스 타입이 LoadBalancer
  #externalTrafficPolicy: Local
---
apiVersion: v1
kind: Service
metadata:
  name: svc2
spec:
  ports:
    - name: svc2-webport
      port: 80
      targetPort: 80
  selector:
    app: webpod
  type: LoadBalancer
  #externalTrafficPolicy: Local
---
apiVersion: v1
kind: Service
metadata:
  name: svc3
spec:
  ports:
    - name: svc3-webport
      port: 80
      targetPort: 80
  selector:
    app: webpod
  type: LoadBalancer
  #externalTrafficPolicy: Local
EOF

 

서비스 확인 및 리더 Speaker 파드 확인

# arp scan 해두기
docker exec -it myk8s-control-plane arp-scan --interfac=eth0 --localnet

# LoadBalancer 타입의 서비스 생성 확인 : EXTERNAL-IP가 서비스 마다 할당되며, 실습 환경에 따라 다를 수 있음
## LoadBalancer 타입의 서비스는 NodePort 와 ClusterIP 를 포함함 - 'allocateLoadBalancerNodePorts : true' 기본값
## ExternalIP 로 접속 시 사용하는 포트는 PORT(S) 의 앞에 있는 값을 사용 (아래의 경우는 TCP 80 임)
## 만약 노드의 IP에 NodePort 로 접속 시 사용하는 포트는 PORT(S) 의 뒤에 있는 값을 사용 (아래는 30485 임)
kubectl get service,ep
NAME                 TYPE           CLUSTER-IP    EXTERNAL-IP      PORT(S)        AGE
service/kubernetes   ClusterIP      10.200.1.1    <none>           443/TCP        19h
service/svc1         LoadBalancer   10.200.1.75   172.18.255.200   80:32678/TCP   30s
service/svc2         LoadBalancer   10.200.1.50   172.18.255.201   80:30623/TCP   30s
service/svc3         LoadBalancer   10.200.1.83   172.18.255.202   80:30403/TCP   30s

NAME                   ENDPOINTS                   AGE
endpoints/kubernetes   172.18.0.5:6443             19h
endpoints/svc1         10.10.1.2:80,10.10.2.2:80   30s
endpoints/svc2         10.10.1.2:80,10.10.2.2:80   30s
endpoints/svc3         10.10.1.2:80,10.10.2.2:80   30s

# LoadBalancer 타입은 기본적으로 NodePort를 포함 사용. NodePort는 ClusterIP를 포함 사용.
## 클라우드사업자 LB Type이나 온프레미스환경 HW LB Type 경우 LB 사용 시 NodePort 미사용 설정 가능
kubectl describe svc svc1

## 아래 처럼 LB VIP 별로 이던 speaker 배포된 노드가 리더 역할을 하는지 확인 가능
kubectl describe svc | grep Events: -A5
...
Events:
  Type    Reason        Age   From                Message
  ----    ------        ----  ----                -------
  Normal  IPAllocated   40m   metallb-controller  Assigned IP ["172.18.255.201"]
  Normal  nodeAssigned  40m   metallb-speaker     announcing from node "myk8s-worker" with protocol "layer2"
...

kubectl get svc svc1 -o json | jq
...
  "spec": {
    "allocateLoadBalancerNodePorts": true,
  ...
  "status": {
    "loadBalancer": {
      "ingress": [
        {
          "ip": "172.18.255.202",
          "ipMode": "VIP" # https://kubernetes.io/blog/2023/12/18/kubernetes-1-29-feature-loadbalancer-ip-mode-alpha/
        }                 # https://kubernetes.io/docs/concepts/services-networking/service/#load-balancer-ip-mode


# metallb CRD인 servicel2status 로 상태 정보 확인
kubectl explain servicel2status
kubectl get servicel2status -n metallb-system
kubectl describe servicel2status -n metallb-system
kubectl get servicel2status -n metallb-system -o json --watch # watch 모드


# 현재 SVC EXTERNAL-IP를 변수에 지정
SVC1EXIP=$(kubectl get svc svc1 -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
SVC2EXIP=$(kubectl get svc svc2 -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
SVC3EXIP=$(kubectl get svc svc3 -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
echo $SVC1EXIP $SVC2EXIP $SVC3EXIP

 

# mypc/mypc2 에서 현재 SVC EXTERNAL-IP를 담당하는 리더 Speaker 파드 찾는법 : arping 툴 사용
docker exec -it mypc arping -I eth0 -f -c 1 $SVC1EXIP
docker exec -it mypc arping -I eth0 -f -c 1 $SVC2EXIP
docker exec -it mypc arping -I eth0 -f -c 1 $SVC3EXIP
for i in $SVC1EXIP $SVC2EXIP $SVC3EXIP; do docker exec -it mypc arping -I eth0 -f -c 1 $i; done
docker exec -it mypc ip -c neigh

docker exec -it mypc ping -c 1 -w 1 -W 1 $SVC1EXIP
docker exec -it mypc ping -c 1 -w 1 -W 1 $SVC2EXIP
docker exec -it mypc ping -c 1 -w 1 -W 1 $SVC3EXIP
for i in $SVC1EXIP $SVC2EXIP $SVC3EXIP; do docker exec -it mypc ping -c 1 -w 1 -W 1 $i; done
for i in 172.18.0.2 172.18.0.3 172.18.0.4 172.18.0.5; do docker exec -it mypc ping -c 1 -w 1 -W 1 $i; done

# mypc/mypc2 에서 arp 테이블 정보 확인 >> SVC IP별로 리더 파드(스피커) 역할의 노드를 확인!
docker exec -it mypc ip -c neigh | sort
172.18.0.2 dev eth0 lladdr 02:42:ac:12:00:02 STALE 
172.18.0.3 dev eth0 lladdr 02:42:ac:12:00:03 STALE 
172.18.0.4 dev eth0 lladdr 02:42:ac:12:00:04 STALE 
172.18.0.5 dev eth0 lladdr 02:42:ac:12:00:05 STALE 
172.18.255.200 dev eth0 lladdr 02:42:ac:12:00:03 STALE 
172.18.255.201 dev eth0 lladdr 02:42:ac:12:00:03 STALE 
172.18.255.202 dev eth0 lladdr 02:42:ac:12:00:04 STALE 

kubectl get node -owide # mac 주소에 매칭되는 IP(노드) 찾기

-> mypc/mypc2 에서 arp 테이블 정보 확인 >> SVC IP별로 리더 파드(스피커) 역할의 노드를 확인!

 

 

서비스 접속 테스트

클라이언트(mypc, mypc2) → 서비스(External-IP) 접속 테스트

# 현재 SVC EXTERNAL-IP를 변수에 지정
SVC1EXIP=$(kubectl get svc svc1 -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
SVC2EXIP=$(kubectl get svc svc2 -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
SVC3EXIP=$(kubectl get svc svc3 -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
echo $SVC1EXIP $SVC2EXIP $SVC3EXIP

# mypc/mypc2 에서 접속 테스트
docker exec -it mypc curl -s $SVC1EXIP
docker exec -it mypc curl -s $SVC1EXIP | grep Hostname
for i in $SVC1EXIP $SVC2EXIP $SVC3EXIP; do docker exec -it mypc curl -s $i | grep Hostname ; done
for i in $SVC1EXIP $SVC2EXIP $SVC3EXIP; do echo ">> Access Service External-IP : $i <<" ; docker exec -it mypc curl -s $i | grep Hostname ; echo ; done

## RemoteAddr 주소는 어떻게 나오나요? 왜 그럴까요?
##  NodePort 기본 동작과 동일하게 인입한 노드의 인터페이스로 SNAT 되어서 최종 파드로 전달됨
for i in $SVC1EXIP $SVC2EXIP $SVC3EXIP; do echo ">> Access Service External-IP : $i <<" ;docker exec -it mypc curl -s $i | egrep 'Hostname|RemoteAddr|Host:' ; echo ; done


# 부하분산 접속됨
docker exec -it mypc zsh -c "for i in {1..100}; do curl -s $SVC1EXIP | grep Hostname; done | sort | uniq -c | sort -nr"
docker exec -it mypc zsh -c "for i in {1..100}; do curl -s $SVC2EXIP | grep Hostname; done | sort | uniq -c | sort -nr"
docker exec -it mypc zsh -c "for i in {1..100}; do curl -s $SVC3EXIP | grep Hostname; done | sort | uniq -c | sort -nr"

# 지속적으로 반복 접속
docker exec -it mypc zsh -c "while true; do curl -s --connect-timeout 1 $SVC1EXIP | egrep 'Hostname|RemoteAddr'; date '+%Y-%m-%d %H:%M:%S' ; echo ;  sleep 1; done"
docker exec -it mypc zsh -c "while true; do curl -s --connect-timeout 1 $SVC2EXIP | egrep 'Hostname|RemoteAddr'; date '+%Y-%m-%d %H:%M:%S' ; echo ;  sleep 1; done"
docker exec -it mypc zsh -c "while true; do curl -s --connect-timeout 1 $SVC3EXIP | egrep 'Hostname|RemoteAddr'; date '+%Y-%m-%d %H:%M:%S' ; echo ;  sleep 1; done"

 

# LoadBalancer Type은 기본값으로 NodePort 포함. NodePort 서비스는 ClusterIP 를 포함
# NodePort:PORT 및 CLUSTER-IP:PORT 로 접속 가능!
kubectl get svc svc1
NAME   TYPE           CLUSTER-IP    EXTERNAL-IP      PORT(S)        AGE
svc1   LoadBalancer   10.200.1.82   172.18.255.202   80:30246/TCP   49m

 

# 컨트롤노드에서 각각 접속 확인 실행 해보자
docker exec -it myk8s-control-plane curl -s 127.0.0.0:32678 # NodePor Type
docker exec -it myk8s-control-plane curl -s 10.200.1.75    # ClusterIP Tpye

 

클라이언트 → 서비스(External-IP) 접속 시 : 리더 파드가 존재하는 노드 인입 후 Service 에 매칭된 iptables rules 에 따라 랜덤 부하 분산되어서(SNAT) 파드로 접속

 

Failover 테스트

리더 Speaker 파드가 존재하는 노드를 재부팅 → curl 접속 테스트 시 10~20초 정도의 장애 시간 발생 ⇒ 이후 자동 원복 되며, 원복 시 5초 정도 장애 시간 발생

# metallb CRD인 servicel2status 로 상태 정보 확인
kubectl get servicel2status -n metallb-system -o json --watch # watch 모드

# mypc/mypc2 에서 현재 SVC EXTERNAL-IP를 담당하는 리더 Speaker 파드 찾기
for i in $SVC1EXIP $SVC2EXIP $SVC3EXIP; do docker exec -it mypc ping -c 1 -w 1 -W 1 $i; done
for i in 172.18.0.2 172.18.0.3 172.18.0.4 172.18.0.5; do docker exec -it mypc ping -c 1 -w 1 -W 1 $i; done

# mypc/mypc2 에서 arp 테이블 정보 확인 >> SVC IP별로 리더 파드(스피커) 역할의 노드를 확인!
docker exec -it mypc ip -c neigh | sort
kubectl get node -owide # mac 주소에 매칭되는 IP(노드) 찾기


# (옵션) 노드에서 ARP 패킷 캡쳐 확인
docker exec -it myk8s-control-plane tcpdump -i eth0 -nn arp
docker exec -it myk8s-worker        tcpdump -i eth0 -nn arp
docker exec -it myk8s-worker2       tcpdump -i eth0 -nn arp
docker exec -it myk8s-worker3       tcpdump -i eth0 -nn arp

# (옵션) metallb-speaker 파드 로그 확인
kubectl logs -n metallb-system -l app=metallb -f
kubectl logs -n metallb-system -l component=speaker --since 1h
kubectl logs -n metallb-system -l component=speaker -f

# (옵션) kubectl krew 플러그인 stern 설치 후 아래 명령 사용 가능
kubectl stern -n metallb-system -l app=metallb
kubectl stern -n metallb-system -l component=speaker --since 1h
kubectl stern -n metallb-system -l component=speaker # 기본 설정이 follow
kubectl stern -n metallb-system speaker  # 매칭 사용 가능

 

# 사전 준비
## 지속적으로 반복 접속
SVC1EXIP=$(kubectl get svc svc1 -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
docker exec -it mypc zsh -c "while true; do curl -s --connect-timeout 1 $SVC1EXIP | egrep 'Hostname|RemoteAddr'; date '+%Y-%m-%d %H:%M:%S' ; echo ;  sleep 1; done"

## 상태 모니터링
watch -d kubectl get pod,svc,ep

## 실시간 로그 확인
kubectl logs -n metallb-system -l app=metallb -f
혹은
kubectl stern -n metallb-system -l app=metallb


# 장애 재연
## 리더 Speaker 파드가 존재하는 노드(실제는 컨테이너)를 중지
docker stop <svc1 번 리더 Speaker 파드가 존재하는 노드(실제는 컨테이너)> --signal 15
docker stop myk8s-worker --signal 15
docker ps -a
docker ps -a | grep worker$

## 지속적으로 반복 접속 상태 모니터링
### curl 연속 접속 시도 >> 대략 10초 이내에 정상 접근 되었지만, 20초까지는 불안정하게 접속이 되었다
### 실제로는 다른 노드의 speaker 파드가 리더가 되고, 이후 다시 노드(컨테이너)가 정상화되면, 다시 리더 speaker 가 됨
docker exec -it mypc zsh -c "while true; do curl -s --connect-timeout 1 $SVC1EXIP | egrep 'Hostname|RemoteAddr'; date '+%Y-%m-%d %H:%M:%S' ; echo ;  sleep 1; done"
Hostname: webpod1
RemoteAddr: 172.18.0.2:25432
2024-09-29 06:31:07

2024-09-29 06:31:09

Hostname: webpod2
RemoteAddr: 172.18.0.2:26011
2024-09-29 06:31:10

2024-09-29 06:31:12

2024-09-29 06:31:14
...

# 변경된 리더 Speaker 파드 확인
# mypc/mypc2 에서 현재 SVC EXTERNAL-IP를 담당하는 리더 Speaker 파드 찾기
for i in $SVC1EXIP $SVC2EXIP $SVC3EXIP; do docker exec -it mypc ping -c 1 -w 1 -W 1 $i; done

# mypc/mypc2 에서 arp 테이블 정보 확인 >> SVC IP별로 리더 파드(스피커) 역할의 노드를 확인!
docker exec -it mypc ip -c neigh | sort
kubectl get node -owide # mac 주소에 매칭되는 IP(노드) 찾기


# 장애 원복(노드 정상화)
## 노드(실제 컨테이너) 정상화 
docker start <svc1 번 리더 Speaker 파드가 존재하는 노드(실제는 컨테이너)>
docker start myk8s-worker

# 변경된 리더 Speaker 파드 확인
# mypc/mypc2 에서 현재 SVC EXTERNAL-IP를 담당하는 리더 Speaker 파드 찾기
for i in $SVC1EXIP $SVC2EXIP $SVC3EXIP; do docker exec -it mypc ping -c 1 -w 1 -W 1 $i; done

# mypc/mypc2 에서 arp 테이블 정보 확인 >> SVC IP별로 리더 파드(스피커) 역할의 노드를 확인!
docker exec -it mypc ip -c neigh | sort
kubectl get node -owide # mac 주소에 매칭되는 IP(노드) 찾기

 

MetalLB는 비추천

-> 쓸거면 BGP 모드로

 

오브젝트 삭제

kubectl delete pod,svc --all

 

 

참고자료

k8s Docs : LoadBalancer Type - Link

 

Service

Expose an application running in your cluster behind a single outward-facing endpoint, even when the workload is split across multiple backends.

kubernetes.io

MetalLB - 공홈 , Github

 

GitHub - metallb/metallb: A network load-balancer implementation for Kubernetes using standard routing protocols

A network load-balancer implementation for Kubernetes using standard routing protocols - metallb/metallb

github.com

 

'IT > Container&k8s' 카테고리의 다른 글

K8s Gateway API  (0) 2024.10.13
K8S IPVS Proxy 모드  (3) 2024.10.05
K8S Service : NodePort  (1) 2024.09.29
K8S Service : ClusterIP  (1) 2024.09.28
Calico 네트워크 모드 / 접근 통제 방법  (1) 2024.09.22