본문 바로가기

IT/Container&k8s

K8S Service : ClusterIP

안녕하세요. Kubernetes Advanced Networking Study(=KANS) 3기 모임에서 스터디한 내용을 정리했습니다. 해당 글에서는 k8s Service 중 Cluster IP에 대해 자세히 알아보겠습니다. 

 

Service

- 쿠버네티스에서 동작하는 애플리케이션을 내/외부에서 유연하게 접속하기 위한 서비스라는 오브젝트가 있음

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app.kubernetes.io/name: MyApp
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376

 

 

Service 등장 배경

1. 파드 생성 : K8S 클러스터 내부에서만 접속

 

2. Cluster Type 연결 : K8S 클러스터 내부에서만 접속

- 동일한 애플리케이션의 다수의 파드의 접속을 용이하게 하기 위한 서비스에 접속

- 고정 접속(호출) 방법을 제공 : ‘고정 VirtualIP’ 와 ‘Domain주소’ 생성

 

3. NodePort Type 연결 : 외부 클라이언트가 서비스를 통해서 클러스터 내부의 파드로 접속

 

4. LoadBalancer Type 연결 : Node Port 단점을 보완

 

Service type

1. Cluster IP 타입

- 클러스터 내부 IP에서 서비스를 노출합니다. 이 값을 선택하면 클러스터 내에서만 서비스에 접근할 수 있습니다. 이는 서비스에 대해 명시적으로 지정하지 않은 경우 사용되는 기본값입니다 .

 

2. NodePort 타입

- 각 노드의 IP에서 정적 포트( NodePort)에서 서비스를 노출합니다. 노드 포트를 사용할 수 있도록 Kubernetes는 서비스를 요청한 것과 마찬가지로 클러스터 IP 주소를 설정합니다 

 

3. LoadBalancer 타입

- CSP별로 L4 역할을 하는 서비스 존재

 

kube proxy - Docs

- 클러스터의 각 노드에서 실행되는 네트워크 프록시로 Kubernetes 서비스 개념의 일부를 구현함

 

Proxies in Kubernetes

This page explains proxies used with Kubernetes. Proxies There are several different proxies you may encounter when using Kubernetes: The kubectl proxy: runs on a user's desktop or in a pod proxies from a localhost address to the Kubernetes apiserver clien

kubernetes.io

https://kubernetes.io/docs/reference/networking/virtual-ips/

 

1. User space 프록시 모드

→ 현재는 미사용

2. Iptables 프록시 모드 (iptables APIs → netfilter subsystem)

3. IPVS 프록시 모드 (kernel IPVS , iptables APIs → netfilter subsystem)

4. nftables 프록시 모드 (nftables API → netfilter subsystem) - https://netfilter.org/projects/nftables/

 

netfilter/iptables project homepage - The netfilter.org "nftables" project

The netfilter.org "nftables" project nftables replaces the popular {ip,ip6,arp,eb}tables. This software provides a new in-kernel packet classification framework that is based on a network-specific Virtual Machine (VM) and a new nft userspace command line t

netfilter.org

5. eBPF 모드 + XDP -> eBPF(Cillium)

 

https://docs.google.com/presentation/d/1tXS3N0196WmdaWYa0ZLVpIMt7uDQdBO6PGdq25z0gvs/edit#slide=id.p 정독 추천!

 

실습 환경 설정 : KIND

실습 환경은 K8S v1.31.0 , CNI(Kindnet, Direct Routing mode) , IPTABLES proxy mode
- 노드(실제로는 컨테이너) 네트워크 대역 : 172.18.0.0/16
- 파드 사용 네트워크 대역 : 10.10.0.0/16 ⇒ 각각 10.10.1.0/24, 10.10.2.0/24, 10.10.3.0/24, 10.10.4.0/24
- 서비스 사용 네트워크 대역 : 10.200.1.0/24

 

https://kubernetes.io/docs/concepts/cluster-administration/networking/

 

#
cat <<EOT> kind-svc-1w.yaml
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
featureGates:
  "InPlacePodVerticalScaling": true
  #"MultiCIDRServiceAllocator": true
nodes:
- role: control-plane
  labels:
    mynode: control-plane
  extraPortMappings:
  - containerPort: 30000
    hostPort: 30000
  - containerPort: 30001
    hostPort: 30001
  - containerPort: 30002
    hostPort: 30002
- role: worker
  labels:
    mynode: worker1
- role: worker
  labels:
    mynode: worker2
- role: worker
  labels:
    mynode: worker3
networking:
  podSubnet: 10.10.0.0/16
  serviceSubnet: 10.200.1.0/24
EOT

# k8s 클러스터 설치
kind create cluster --config kind-svc-1w.yaml --name myk8s --image kindest/node:v1.31.0
docker ps

# 노드에 기본 툴 설치
docker exec -it myk8s-control-plane sh -c 'apt update && apt install tree psmisc lsof wget bridge-utils net-tools ipset ipvsadm nfacct tcpdump ngrep iputils-ping arping git vim arp-scan -y'
for i in worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-$i sh -c 'apt update && apt install tree psmisc lsof wget bridge-utils net-tools ipset ipvsadm nfacct tcpdump ngrep iputils-ping arping -y'; echo; done

KIND로 k8s 클러스터 설치

 

# k8s v1.31.0 버전 확인
kubectl get node

# 노드 labels 확인
kubectl get nodes -o jsonpath="{.items[*].metadata.labels}" | grep mynode
kubectl get nodes -o jsonpath="{.items[*].metadata.labels}" | jq | grep mynode

# kind network 중 컨테이너(노드) IP(대역) 확인 : 172.18.0.2~ 부터 할당되며, control-plane 이 꼭 172.18.0.2가 안될 수 도 있음
docker ps -q | xargs docker inspect --format '{{.Name}} {{.NetworkSettings.Networks.kind.IPAddress}}'
/myk8s-control-plane 172.18.0.4
/myk8s-worker 172.18.0.3
/myk8s-worker2 172.18.0.5
/myk8s-worker3 172.18.0.2

 

# 파드CIDR 과 Service 대역 확인 : CNI는 kindnet 사용
kubectl get cm -n kube-system kubeadm-config -oyaml | grep -i subnet
      podSubnet: 10.10.0.0/16
      serviceSubnet: 10.200.1.0/24
kubectl cluster-info dump | grep -m 2 -E "cluster-cidr|service-cluster-ip-range"

# feature-gates 확인 : https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
kubectl describe pod -n kube-system | grep feature-gates
      --feature-gates=InPlacePodVerticalScaling=true
kubectl get servicecidr # MultiCIDRServiceAllocator : https://kubernetes.io/docs/tasks/network/extend-service-ip-ranges/

# 노드마다 할당된 dedicated subnet (podCIDR) 확인
kubectl get nodes -o jsonpath="{.items[*].spec.podCIDR}"
10.10.0.0/24 10.10.4.0/24 10.10.3.0/24 10.10.1.0/24

 

 

# kube-proxy configmap 확인
kubectl describe cm -n kube-system kube-proxy
...
mode: iptables
iptables:
  localhostNodePorts: null
  masqueradeAll: false
  masqueradeBit: null
  minSyncPeriod: 1s
  syncPeriod: 0s
...

 

# 노드 별 네트워트 정보 확인 : CNI는 kindnet 사용
for i in control-plane worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-$i ls /opt/cni/bin/; echo; done
for i in control-plane worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-$i cat /etc/cni/net.d/10-kindnet.conflist; echo; done
for i in control-plane worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-$i ip -c route; echo; done
for i in control-plane worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-$i ip -c addr; echo; done
for i in control-plane worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-$i ip -c -4 addr show dev eth0; echo; done

# iptables 정보 확인
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-control-plane  iptables -t $i -S ; echo; done
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-worker  iptables -t $i -S ; echo; done
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-worker2 iptables -t $i -S ; echo; done
for i in filter nat mangle raw ; do echo ">> IPTables Type : $i <<"; docker exec -it myk8s-worker3 iptables -t $i -S ; echo; done

# 각 노드 bash 접속
docker exec -it myk8s-control-plane bash
docker exec -it myk8s-worker bash
docker exec -it myk8s-worker2 bash
docker exec -it myk8s-worker3 bash
----------------------------------------

exit
----------------------------------------

 

# arp에 수집되는 패킷정보를 localnet으로 출력해 줌
docker exec -it myk8s-control-plane arp-scan --interfac=eth0 --localnet
docker run -d --rm --name mypc --network kind --ip 172.18.0.100 nicolaka/netshoot sleep infinity
docker ps
docker exec -it mypc ping -c 1 172.18.0.1
for i in {1..5} ; do docker exec -it mypc ping -c 1 172.18.0.$i; done
docker exec -it mypc zsh
-------------
ifconfig
ping -c 1 172.18.0.2
exit
-------------

 

# kube-ops-view 설치
helm repo add geek-cookbook https://geek-cookbook.github.io/charts/
helm install kube-ops-view geek-cookbook/kube-ops-view --version 1.2.2 --set service.main.type=NodePort,service.main.ports.http.nodePort=30000 --set env.TZ="Asia/Seoul" --namespace kube-system

# myk8s-control-plane 배치
kubectl -n kube-system edit deploy kube-ops-view
---
spec:
  ...
  template:
    ...
    spec:
      nodeSelector:
        mynode: control-plane
      tolerations:
      - key: "node-role.kubernetes.io/control-plane"
        operator: "Equal"
        effect: "NoSchedule"
---

# 설치 확인
kubectl -n kube-system get pod -o wide -l app.kubernetes.io/instance=kube-ops-view

# kube-ops-view 접속 URL 확인 (1.5 , 2 배율) : macOS 사용자
echo -e "KUBE-OPS-VIEW URL = http://localhost:30000/#scale=1.5"
echo -e "KUBE-OPS-VIEW URL = http://localhost:30000/#scale=2"

# kube-ops-view 접속 URL 확인 (1.5 , 2 배율) : Windows 사용자
echo -e "KUBE-OPS-VIEW URL = http://192.168.50.10:30000/#scale=1.5"
echo -e "KUBE-OPS-VIEW URL = http://192.168.50.10:30000/#scale=2"

 

 

Service : ClusterIP 타입

클라이언트(TestPod)가 'CLUSTER-IP' 접속 시 해당 노드의 iptables 룰(랜덤 분산)에 의해서 DNAT 처리가 되어 목적지(backend) 파드와 통신

 

실습 구성

- 목적지(backend) 파드(Pod) 생성 : 3pod.yaml

- 클라이언트(TestPod) 생성 : netpod.yaml

- 서비스(ClusterIP) 생성 : svc-clusterip.yaml ← spec.ports.port 와 spec.ports.targetPort 이해하기!!!

cat <<EOT> svc-clusterip.yaml
apiVersion: v1
kind: Service
metadata:
  name: svc-clusterip
spec:
  ports:
    - name: svc-webport
      port: 9000        # 서비스 IP 에 접속 시 사용하는 포트 port 를 의미
      targetPort: 80    # 타킷 targetPort 는 서비스를 통해서 목적지 파드로 접속 시 해당 파드로 접속하는 포트를 의미
  selector:
    app: webpod         # 셀렉터 아래 app:webpod 레이블이 설정되어 있는 파드들은 해당 서비스에 연동됨
  type: ClusterIP       # 서비스 타입
EOT

 

# 모니터링
watch -d 'kubectl get pod -owide ;echo; kubectl get svc,ep svc-clusterip'

# 생성
kubectl apply -f 3pod.yaml,netpod.yaml,svc-clusterip.yaml

# 파드와 서비스 사용 네트워크 대역 정보 확인 
kubectl cluster-info dump | grep -m 2 -E "cluster-cidr|service-cluster-ip-range"

# 확인
kubectl get pod -owide
kubectl get svc svc-clusterip

 

# spec.ports.port 와 spec.ports.targetPort 가 어떤 의미인지 꼭 이해하자!
kubectl describe svc svc-clusterip

# 서비스 생성 시 엔드포인트를 자동으로 생성, 물론 수동으로 설정 생성도 가능
kubectl get endpoints svc-clusterip
kubectl get endpointslices -l kubernetes.io/service-name=svc-clusterip

 

서비스(ClusterIP) 접속 확인

클라이언트(TestPod) Shell 에서 접속 테스트 & 서비스(ClusterIP) 부하분산 접속 확인

# webpod 파드의 IP 를 출력
kubectl get pod -l app=webpod -o jsonpath="{.items[*].status.podIP}"

# webpod 파드의 IP를 변수에 지정
WEBPOD1=$(kubectl get pod webpod1 -o jsonpath={.status.podIP})
WEBPOD2=$(kubectl get pod webpod2 -o jsonpath={.status.podIP})
WEBPOD3=$(kubectl get pod webpod3 -o jsonpath={.status.podIP})
echo $WEBPOD1 $WEBPOD2 $WEBPOD3

# net-pod 파드에서 webpod 파드의 IP 를 curl 로 반복 접속
for pod in $WEBPOD1 $WEBPOD2 $WEBPOD3; do kubectl exec -it net-pod -- curl -s $pod; done
for pod in $WEBPOD1 $WEBPOD2 $WEBPOD3; do kubectl exec -it net-pod -- curl -s $pod | grep Hostname; done
for pod in $WEBPOD1 $WEBPOD2 $WEBPOD3; do kubectl exec -it net-pod -- curl -s $pod | grep Host; done
for pod in $WEBPOD1 $WEBPOD2 $WEBPOD3; do kubectl exec -it net-pod -- curl -s $pod | egrep 'Host|RemoteAddr'; done

# 서비스 IP 변수 지정 : svc-clusterip 의 ClusterIP주소
SVC1=$(kubectl get svc svc-clusterip -o jsonpath={.spec.clusterIP})
echo $SVC1

 

# 서비스 생성 시 kube-proxy 에 의해서 iptables 규칙이 모든 노드에 추가됨 
docker exec -it myk8s-control-plane iptables -t nat -S | grep $SVC1
for i in control-plane worker worker2 worker3; do echo ">> node myk8s-$i <<"; docker exec -it myk8s-control-plane iptables -t nat -S | grep $SVC1; echo; done
-A KUBE-SERVICES -d 10.200.1.52/32 -p tcp -m comment --comment "default/svc-clusterip:svc-webport cluster IP" -m tcp --dport 9000 -j KUBE-SVC-KBDEBIL6IU6WL7RF

 

 

-dport : 9000이 TCP 소켓이 열려있는지? 안열려있음

 

## (참고) ss 툴로 tcp listen 정보에는 없음 , 별도 /32 host 라우팅 추가 없음 -> 즉, iptables rule 에 의해서 처리됨을 확인
docker exec -it myk8s-control-plane ss -tnlp
docker exec -it myk8s-control-plane ip -c route

 

 

 

# TCP 80,9000 포트별 접속 확인 : 출력 정보 의미 확인
kubectl exec -it net-pod -- curl -s --connect-timeout 1 $SVC1
kubectl exec -it net-pod -- curl -s --connect-timeout 1 $SVC1:9000
kubectl exec -it net-pod -- curl -s --connect-timeout 1 $SVC1:9000 | grep Hostname
kubectl exec -it net-pod -- curl -s --connect-timeout 1 $SVC1:9000 | grep Hostname

# 서비스(ClusterIP) 부하분산 접속 확인
## for 문을 이용하여 SVC1 IP 로 100번 접속을 시도 후 출력되는 내용 중 반복되는 내용의 갯수 출력
## 반복해서 실행을 해보면, SVC1 IP로 curl 접속 시 3개의 파드로 대략 33% 정도로 부하분산 접속됨을 확인
kubectl exec -it net-pod -- zsh -c "for i in {1..10};   do curl -s $SVC1:9000 | grep Hostname; done | sort | uniq -c | sort -nr"
kubectl exec -it net-pod -- zsh -c "for i in {1..100};  do curl -s $SVC1:9000 | grep Hostname; done | sort | uniq -c | sort -nr"
kubectl exec -it net-pod -- zsh -c "for i in {1..1000}; do curl -s $SVC1:9000 | grep Hostname; done | sort | uniq -c | sort -nr"
혹은
kubectl exec -it net-pod -- zsh -c "for i in {1..100};   do curl -s $SVC1:9000 | grep Hostname; sleep 1; done"
kubectl exec -it net-pod -- zsh -c "for i in {1..100};   do curl -s $SVC1:9000 | grep Hostname; sleep 0.1; done"
kubectl exec -it net-pod -- zsh -c "for i in {1..10000}; do curl -s $SVC1:9000 | grep Hostname; sleep 0.01; done"

 

# conntrack 확인
docker exec -it myk8s-control-plane bash
----------------------------------------
conntrack -h
conntrack -E
conntrack -C
conntrack -S
conntrack -L --src 10.10.0.6 # net-pod IP
conntrack -L --dst $SVC1     # service ClusterIP
exit
----------------------------------------

# (참고) Link layer 에서 동작하는 ebtables
ebtables -L

 

각 워커노드에서 패킷 덤프 확인

# 1대 혹은 3대 bash 진입 후 tcpdump 해둘 것
docker exec -it myk8s-worker bash
docker exec -it myk8s-worker2 bash
docker exec -it myk8s-worker3 bash
----------------------------------
# nic 정보 확인
ip -c link
ip -c route
ip -c addr

 

# tcpdump/ngrep : eth0 >> tcp 9000 포트 트래픽은 왜 없을까? iptables rule 동작 그림을 한번 더 확인하고 이해해보자
## ngrep 네트워크 패킷 분석기 활용해보기 : 특정 url 호출에 대해서만 필터 등 깔끔하게 볼 수 있음 - 링크
tcpdump -i eth0 tcp port 80 -nnq
tcpdump -i eth0 tcp port 80 -w /root/svc1-1.pcap
tcpdump -i eth0 tcp port 9000 -nnq
ngrep -tW byline -d eth0 '' 'tcp port 80'

 

 

# tcpdump/ngrep : vethX
VETH1=<각자 자신의 veth 이름>
tcpdump -i $VETH1 tcp port 80 -nn
tcpdump -i $VETH1 tcp port 80 -w /root/svc1-2.pcap
tcpdump -i $VETH1 tcp port 9000 -nn
ngrep -tW byline -d $VETH1 '' 'tcp port 80'

exit
----------------------------------
혹은
docker exec -it myk8s-worker tcpdump -i eth0 tcp port 80 -nnq
VETH1=<각자 자신의 veth 이름> # docker exec -it myk8s-worker ip -c route
docker exec -it myk8s-worker tcpdump -i $VETH1 tcp port 80 -nnq

# 호스트PC에 pcap 파일 복사 >> wireshark 에서 분석
docker cp myk8s-worker:/root/svc1-1.pcap .
docker cp myk8s-worker:/root/svc1-2.pcap .

 

클라이언트(TestPod) → 서비스(ClusterIP) 접속 시 : 3개의 목적지(backend) 파드로 랜덤 부하 분산 접속됨

 

 

IPTABLES 정책 확인

- iptables : K8S 클러스터 운영 관리 시 까다로운 영역 

iptables 정책 적용 순서

- PREROUTING → KUBE-SERVICES → KUBE-SVC-### → KUBE-SEP-#<파드1> , KUBE-SEP-#<파드2> , KUBE-SEP-#<파드3>

- 내부에서 클러스터 IP로 접속 시, PREROUTE(nat) 에서 DNAT(3개 파드) 되고, POSTROUTE(nat) 에서 SNAT 되지 않고 나간다!

 

sessionAffinity: ClientIP

- sessionAffinity: ClientIP : 클라이언트가 접속한 목적지(파드)에 고정적인 접속을 지원 - k8s_Docs

# 기본 정보 확인
kubectl get svc svc-clusterip -o yaml
kubectl get svc svc-clusterip -o yaml | grep sessionAffinity

# 반복 접속
kubectl exec -it net-pod -- zsh -c "while true; do curl -s --connect-timeout 1 $SVC1:9000 | egrep 'Hostname|IP: 10|Remote'; date '+%Y-%m-%d %H:%M:%S' ; echo ;  sleep 1; done"

# sessionAffinity: ClientIP 설정 변경
kubectl patch svc svc-clusterip -p '{"spec":{"sessionAffinity":"ClientIP"}}'
혹은
kubectl get svc svc-clusterip -o yaml | sed -e "s/sessionAffinity: None/sessionAffinity: ClientIP/" | kubectl apply -f -

#
kubectl get svc svc-clusterip -o yaml
...
  sessionAffinity: ClientIP
  sessionAffinityConfig:
    clientIP:
      timeoutSeconds: 10800
...

# 클라이언트(TestPod) Shell 실행
kubectl exec -it net-pod -- zsh -c "for i in {1..100};  do curl -s $SVC1:9000 | grep Hostname; done | sort | uniq -c | sort -nr"
kubectl exec -it net-pod -- zsh -c "for i in {1..1000}; do curl -s $SVC1:9000 | grep Hostname; done | sort | uniq -c | sort -nr"

 

오브젝트 삭제

kubectl delete svc,pods --all

 

 

서비스(ClusterIP) 보완점

- 클러스터 외부에서는 서비스(ClusterIP)로 접속이 불가능하여 NodePort 타입으로 외부에서 접속 가능함

- IPtables 는 파드에 대한 헬스체크 기능이 없어서 문제 있는 파드에 연결 가능 ⇒ 서비스 사용, 파드에 Readiness Probe 설정으로 파드 문제 시 서비스의 엔드포인트에서 제거되게 할 수 있음

- 서비스에 연동된 파드 갯수 퍼센트(%)로 랜덤 분산 방식, 세션어피니티 이외에 다른 분산 방식 불가능 -> IPVS 경우 다양한 분산 방식(알고리즘) 가능

 

 

참고 자료 

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

 

Service

Expose an application running in your cluster behind a single outward-facing endpoint, even when the workload is split across multiple backends.

kubernetes.io